

Welcome to MMYOLO’s documentation!

You can switch between Chinese and English documents in the top-right corner of the layout.

Get Started

	Overview
	MMYOLO Introduction

	User guide for this documentation

	Prerequisites

	Installation
	Best Practices

	Verify the installation

	Using MMYOLO with Docker

	Troubleshooting

	15 minutes to get started with MMYOLO object detection
	Installation

	Dataset

	Config

	Training

	Testing

	Feature map visualization

	EasyDeploy deployment

	15 minutes to get started with MMYOLO rotated object detection

	15 minutes to get started with MMYOLO instance segmentation
	Installation

	Dataset

	Config

	Training

	Testing

	Feature map visualization

	EasyDeploy deployment

Recommended Topics

	Contributing to OpenMMLab
	Preparation

	Pull Request Workflow

	Guidance

	Code style

	PR Specs

	Training testing tricks
	Training tricks

	Testing trick

	Model design instructions
	YOLO series model basic class

	HeadModule

	Algorithm principles and implementation
	Algorithm principles and implementation with YOLOv5

	Algorithm principles and implementation with YOLOv8

	Algorithm principles and implementation with RTMDet

	MMYOLO application examples
	A benchmark for ionogram real-time object detection based on MMYOLO

	Replace the backbone network
	Use backbone network implemented in MMYOLO

	Use backbone network implemented in other OpenMMLab repositories

	Model Complexity Analysis
	Usage Example 1: Print Flops, Parameters and related information by table

	Usage Example 2: Print related information by network layers

	Annotation-to-deployment workflow for custom dataset
	1. Prepare custom dataset

	2. Use the software of labelme to annotate

	3. Convert the dataset into COCO format

	4. Divide dataset into training set, validation set and test set

	5. Create a new config file based on the dataset

	6. Visual analysis of datasets

	7. Optimize Anchor size

	8. Visualization the data processing part of config

	9. Train

	10. Inference

	11. Deployment

	Appendix

	Visualization
	Feature map visualization

	Grad-Based and Grad-Free CAM Visualization

	Perform inference on large images

	MMDeploy deployment tutorial
	Basic Deployment Guide

	YOLOv5 Deployment

	Deploy using Docker

	EasyDeploy deployment tutorial
	EasyDeploy Deployment

	Troubleshooting steps for common errors

	MM series repo essential basics

	Dataset preparation and description
	DOTA Dataset

Common Usage

	Resume training

	Automatic mixed precision（AMP）training

	Multi-scale training and testing
	Multi-scale training

	Multi-scale testing

	TTA Related Notes
	Test Time Augmentation (TTA)

	Plugins

	Freeze layers
	Freeze the weight of backbone

	Freeze the weight of neck

	Output prediction results
	Output into json file

	Output into pkl file

	Set the random seed

	Module combination

	Use mim to run scripts from other OpenMMLab repositories
	Log Analysis

	Apply multiple Necks

	Specify specific GPUs during training or inference

	Single and multi-channel application examples
	Training example on a single-channel image dataset

	Training example on a multi-channel image dataset

Useful Tools

	Visualize COCO labels

	Visualize Datasets

	Print the whole config

	Visualize dataset analysis

	Optimize anchors size
	k-means

	Differential Evolution

	v5-k-means

	Extracts a subset of COCO

	Hyper-parameter Scheduler Visualization

	Dataset Conversion

	Download Dataset

	Log Analysis
	Curve plotting

	Compute the average training speed

	Convert Model
	YOLOv5

	YOLOX

Basic Tutorials

	Learn about Configs with YOLOv5
	Config file content

	Config file inheritance

	Modify config through script arguments

	Config name style

	Mixed image data augmentation update

	Customize Installation
	CUDA versions

	Install MMEngine without MIM

	Install MMCV without MIM

	Install on CPU-only platforms

	Install on Google Colab

	Develop using multiple MMYOLO versions

	Common Warning Notes
	xxx registry in mmyolo did not set import location

	save_param_schedulers is true but self.param_schedulers is None

	The loss_cls will be 0. This is a normal phenomenon.

	The model and loaded state dict do not match exactly

	Frequently Asked Questions
	Why do we need to launch MMYOLO?

	What is the projects folder used for?

	Why does the performance drop significantly by switching the YOLOv5 backbone to Swin?

	How to use the components implemented in all MM series repositories?

	Can pure background pictures be added in MMYOLO for training?

	Is there a script to calculate the inference FPS in MMYOLO?

	What is the difference between MMDeploy and EasyDeploy?

	How to check the AP of every category in COCOMetric?

	Why doesn’t MMYOLO support the auto-learning rate scaling feature as MMDet?

	Why is the weight size of my trained model larger than the official one?

	Why does the RTMDet cost more graphics memory during the training than YOLOv5?

	Do I need to reinstall MMYOLO after modifying some code?

	How to use multiple versions of MMYOLO to develop?

	How to save the best checkpoints during the training?

	How to train and test with non-square input sizes?

Advanced Tutorials

	MMYOLO cross-library application

Model Zoo

	Model Zoo and Benchmark
	COCO dataset

	VOC dataset

	CrowdHuman dataset

	DOTA 1.0 dataset

Notes

	Changelog

	Compatibility of MMYOLO

	Conventions

	Code Style

API Reference

	mmyolo.datasets

	mmyolo.engine

	mmyolo.models

	mmyolo.utils

Switch Language

	English

	简体中文

Indices and tables

	Index

	Search Page

Overview

MMYOLO Introduction

 Prerequisites

Prerequisites

Compatible MMEngine, MMCV and MMDetection versions are shown as below. Please install the correct version to avoid installation issues.

	MMYOLO version
	MMDetection version
	MMEngine version
	MMCV version

	main
	mmdet>=3.0.0, \<3.1.0
	mmengine>=0.7.1, \<1.0.0
	mmcv>=2.0.0rc4, \<2.1.0

	0.6.0
	mmdet>=3.0.0, \<3.1.0
	mmengine>=0.7.1, \<1.0.0
	mmcv>=2.0.0rc4, \<2.1.0

	0.5.0
	mmdet>=3.0.0rc6, \<3.1.0
	mmengine>=0.6.0, \<1.0.0
	mmcv>=2.0.0rc4, \<2.1.0

	0.4.0
	mmdet>=3.0.0rc5, \<3.1.0
	mmengine>=0.3.1, \<1.0.0
	mmcv>=2.0.0rc0, \<2.1.0

	0.3.0
	mmdet>=3.0.0rc5, \<3.1.0
	mmengine>=0.3.1, \<1.0.0
	mmcv>=2.0.0rc0, \<2.1.0

	0.2.0
	mmdet>=3.0.0rc3, \<3.1.0
	mmengine>=0.3.1, \<1.0.0
	mmcv>=2.0.0rc0, \<2.1.0

	0.1.3
	mmdet>=3.0.0rc3, \<3.1.0
	mmengine>=0.3.1, \<1.0.0
	mmcv>=2.0.0rc0, \<2.1.0

	0.1.2
	mmdet>=3.0.0rc2, \<3.1.0
	mmengine>=0.3.0, \<1.0.0
	mmcv>=2.0.0rc0, \<2.1.0

	0.1.1
	mmdet==3.0.0rc1
	mmengine>=0.1.0, \<0.2.0
	mmcv>=2.0.0rc0, \<2.1.0

	0.1.0
	mmdet==3.0.0rc0
	mmengine>=0.1.0, \<0.2.0
	mmcv>=2.0.0rc0, \<2.1.0

In this section, we demonstrate how to prepare an environment with PyTorch.

MMDetection works on Linux, Windows, and macOS. It requires:

	Python 3.7+

	PyTorch 1.7+

	CUDA 9.2+

	GCC 5.4+

Note

If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official commands [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

Step 3. Verify PyTorch installation

python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())"

If the GPU is used, the version information and True are printed; otherwise, the version information and False are printed.

 Installation

Installation

Best Practices

Step 0. Install MMEngine [https://github.com/open-mmlab/mmengine] and MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"

If you are currently in the mmyolo project directory, you can use the following simplified commands

cd mmyolo
pip install -U openmim
mim install -r requirements/mminstall.txt

Note:

a. In MMCV-v2.x, mmcv-full is rename to mmcv, if you want to install mmcv without CUDA ops, you can use mim install "mmcv-lite>=2.0.0rc1" to install the lite version.

b. If you would like to use albumentations, we suggest using pip install -r requirements/albu.txt or pip install -U albumentations --no-binary qudida,albumentations. If you simply use pip install albumentations==1.0.1, it will install opencv-python-headless simultaneously (even though you have already installed opencv-python). We recommended checking the environment after installing albumentation to ensure that opencv-python and opencv-python-headless are not installed at the same time, because it might cause unexpected issues if they both installed. Please refer to official documentation [https://albumentations.ai/docs/getting_started/installation/#note-on-opencv-dependencies] for more details.

Step 1. Install MMYOLO.

Case a: If you develop and run mmdet directly, install it from source:

git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
Install albumentations
pip install -r requirements/albu.txt
Install MMYOLO
mim install -v -e .
"-v" means verbose, or more output
"-e" means installing a project in editable mode,
thus any local modifications made to the code will take effect without reinstallation.

Case b: If you use MMYOLO as a dependency or third-party package, install it with MIM:

mim install "mmyolo"

Verify the installation

To verify whether MMYOLO is installed correctly, we provide an inference demo.

Step 1. We need to download config and checkpoint files.

mim download mmyolo --config yolov5_s-v61_syncbn_fast_8xb16-300e_coco --dest .

The downloading will take several seconds or more, depending on your network environment. When it is done, you will find two files yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py and yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth in your current folder.

Step 2. Verify the inference demo.

Option (a). If you install MMYOLO from source, just run the following command.

python demo/image_demo.py demo/demo.jpg \
 yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
 yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth

Optional parameters
--out-dir ./output *The detection results are output to the specified directory. When args have action --show, the script do not save results. Default: ./output
--device cuda:0 *The computing resources used, including cuda and cpu. Default: cuda:0
--show *Display the results on the screen. Default: False
--score-thr 0.3 *Confidence threshold. Default: 0.3

You will see a new image on your output folder, where bounding boxes are plotted.

Supported input types:

	Single image, include jpg, jpeg, png, ppm, bmp, pgm, tif, tiff, webp.

	Folder, all image files in the folder will be traversed and the corresponding results will be output.

	URL, will automatically download from the URL and the corresponding results will be output.

Option (b). If you install MMYOLO with MIM, open your python interpreter and copy&paste the following codes.

from mmdet.apis import init_detector, inference_detector

config_file = 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'
checkpoint_file = 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth'
model = init_detector(config_file, checkpoint_file, device='cpu') # or device='cuda:0'
inference_detector(model, 'demo/demo.jpg')

You will see a list of DetDataSample, and the predictions are in the pred_instance, indicating the detected bounding boxes, labels, and scores.

Using MMYOLO with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmyolo/blob/main/docker/Dockerfile] to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

Reminder: If you find out that your download speed is very slow, we suggest canceling the comments in the last two lines of Optional in the Dockerfile [https://github.com/open-mmlab/mmyolo/blob/main/docker/Dockerfile#L19-L20] to obtain a rocket like download speed:

(Optional)
RUN sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list && \
 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

Build Command：

build an image with PyTorch 1.9, CUDA 11.1
If you prefer other versions, just modified the Dockerfile
docker build -t mmyolo docker/

Run it with:

export DATA_DIR=/path/to/your/dataset
docker run --gpus all --shm-size=8g -it -v ${DATA_DIR}:/mmyolo/data mmyolo

For other customized inatallation, see Customized Installation

Troubleshooting

If you have some issues during the installation, please first view the FAQ page.
You may open an issue [https://github.com/open-mmlab/mmyolo/issues/new/choose] on GitHub if no solution is found.

 15 minutes to get started with MMYOLO object detection

15 minutes to get started with MMYOLO object detection

Object detection task refers to that given a picture, the network predicts all the categories of objects included in the picture and the corresponding boundary boxes

 15 minutes to get started with MMYOLO rotated object detection

15 minutes to get started with MMYOLO rotated object detection

TODO

 15 minutes to get started with MMYOLO instance segmentation

15 minutes to get started with MMYOLO instance segmentation

Instance segmentation is a task in computer vision that aims to segment each object in an image and assign each object a unique identifier.

Unlike semantic segmentation, instance segmentation not only segments out different categories in an image, but also separates different instances of the same category.

 Contributing to OpenMMLab

Contributing to OpenMMLab

Welcome to the MMYOLO community, we are committed to building a cutting-edge computer vision foundational library, and all kinds of contributions are welcomed, including but not limited to

Fix bug

You can directly post a Pull Request to fix typos in code or documents

The steps to fix the bug of code implementation are as follows.

	If the modification involves significant changes, you should create an issue first and describe the error information and how to trigger the bug. Other developers will discuss it with you and propose a proper solution.

	Posting a pull request after fixing the bug and adding the corresponding unit test.

New Feature or Enhancement

	If the modification involves significant changes, you should create an issue to discuss with our developers to propose a proper design.

	Post a Pull Request after implementing the new feature or enhancement and add the corresponding unit test.

Document

You can directly post a pull request to fix documents. If you want to add a document, you should first create an issue to check if it is reasonable.

Preparation

The commands for processing pull requests are implemented using Git, and this chapter details Git Configuration and associated GitHub.

1. Git Configuration

First, make sure you have Git installed on your computer. For Linux systems and macOS systems, Git is generally installed by default. If it is not installed, it can be downloaded at Git-Downloads [https://git-scm.com/downloads].

view the Git version
git --version

Second, check your Git Config

view the Git config
git config --global --list

If user.name and user.email are empty, run the command.

git config --global user.name "Change your username here"
git config --global user.email "Change your useremail here"

Finally, run the command in git bash or terminal to generate the key file. After the generation is successful, a .ssh file will appear in the user directory, and id_rsa.pub is the public key file.

useremail is GitHub's email address
ssh-keygen -t rsa -C "useremail"

2. Associated GitHub

First, open id_rsa.pub and copy the entire contents.

Second, log in to your GitHub account to set it up.

Click New SSH key to add a new SSH keys, and paste the copied content into Key.

Finally, verify that SSH matches the GitHub account by running the command in git bash or terminal. If it matches, enter yes to succeed.

ssh -T git@github.com

 Training testing tricks

Training testing tricks

MMYOLO has already supported most of the YOLO series object detection related algorithms. Different algorithms may involve some practical tricks. This section will describe in detail the commonly used training and testing tricks supported by MMYOLO based on the implemented object detection algorithms.

Training tricks

Improve performance of detection

1. Multi-scale training

In the field of object detection, multi-scale training is a very common trick. However, in YOLO, most of the models are trained with a single-scale input of 640x640. There are two reasons for this:

	Single-scale training is faster than multi-scale training. When the training epoch is at 300 or 500, training efficiency is a major concern for users. Multi-scale training will be slower.

	Multi-scale augmentation is implied in the training pipeline, which is equivalent to the application of multi-scale training, such as the ‘Mosaic’, ‘RandomAffine’ and ‘Resize’, so there is no need to introduce the multi-scale training of model input again.

Through experiments on the COCO dataset, it is founded that the multi-scale training is introduced directly after the output of YOLOv5’s DataLoader, the actual performance improvement is very small. If you want to start multi-scale training for YOLO series algorithms in MMYOLO, you can refer to ms_training_testing,
however, this does not mean that there are no significant gains in user-defined dataset fine-tuning mode

2 Use Mask annotation to optimize object detection performance

When the dataset annotation is complete, such as boundary box annotation and instance segmentation annotation exist at the same time, but only part of the annotation is required for the task, the task can be trained with complete data annotation to improve the performance.
In object detection, we can also learn from instance segmentation annotation to improve the performance of object detection. The following is the detection result of additional instance segmentation annotation optimization introduced by YOLOv8. The performance gains are shown below:

As shown in the figure, different scale models have different degrees of performance improvement.
It is important to note that ‘Mask Refine’ only functions in the data enhancement phase and does not require any changes to other training parts of the model and does not affect the speed of training. The details are as follows:

The above-mentioned Mask represents a data augmentation transformation in which instance segmentation annotations play a key role.
The application of this technique to other YOLO series has varying degrees of increase.

3 Turn off strong augmentation in the later stage of training to improve detection performance

This strategy is proposed for the first time in YOLOX algorithm and can greatly improve the detection performance.
The paper points out that Mosaic+MixUp can greatly improve the target detection performance, but the training pictures are far from the real distribution of natural pictures, and Mosaic’s large number of cropping operations will bring many inaccurate label boxes,
therefore, YOLOX proposes to turn off the strong enhancement in the last 15 epochs and use the weaker enhancement instead, so that the detector can avoid the influence of inaccurate labeled boxes and complete the final convergence under the data distribution of the natural picture.

This strategy has been applied to most YOLO algorithms. Taking YOLOv8 as an example, its data augmentation pipeline is shown as follows:

However, when to turn off the strong augmentation is a hyper-parameter. If you turn off the strong augmentation too early, it may not give full play to Mosaic and other strong augmentation effects. If you turn off the strong enhancement too late, it will have no gain because it has been overfitted before. This phenomenon can be observed in YOLOv8 experiment

	Backbone
	Mask Refine
	box AP
	Epoch of best mAP

	YOLOv8-n
	No
	37.2
	500

	YOLOv8-n
	Yes
	37.4 (+0.2)
	499

	YOLOv8-s
	No
	44.2
	430

	YOLOv8-s
	Yes
	45.1 (+0.9)
	460

	YOLOv8-m
	No
	49.8
	460

	YOLOv8-m
	Yes
	50.6 (+0.8)
	480

	YOLOv8-l
	No
	52.1
	460

	YOLOv8-l
	Yes
	53.0 (+0.9)
	491

	YOLOv8-x
	No
	52.7
	450

	YOLOv8-x
	Yes
	54.0 (+1.3)
	460

As can be seen from the above table:

	Large models trained on COCO dataset for 500 epochs are prone to overfitting, and disabling strong augmentations such as Mosaic may not be effective in reducing overfitting in such cases.

	Using Mask annotations can alleviate overfitting and improve performance

4 Add pure background images to suppress false positives

For non-open-world datasets in object detection, both training and testing are conducted on a fixed set of classes, and there is a possibility of producing false positives when applied to images with classes that have not been trained. A common mitigation strategy is to add a certain proportion of pure background images.
In most YOLO series, the function of suppressing false positives by adding pure background images is enabled by default. Users only need to set train_dataloader.dataset.filter_cfg.filter_empty_gt to False, indicating that pure background images should not be filtered out during training.

5 Maybe the AdamW works wonders

YOLOv5, YOLOv6, YOLOv7 and YOLOv8 all adopt the SGD optimizer, which is strict about parameter settings, while AdamW is on the contrary, which is not so sensitive to learning rate. If user fine-tune a custom-dataset can try to select the AdamW optimizer. We did a simple trial in YOLOX and found that replacing the optimizer with AdamW on the tiny, s, and m scale models all had some improvement.

	Backbone
	Size
	Batch Size
	RTMDet-Hyp
	Box AP

	YOLOX-tiny
	416
	8xb8
	No
	32.7

	YOLOX-tiny
	416
	8xb32
	Yes
	34.3 (+1.6)

	YOLOX-s
	640
	8xb8
	No
	40.7

	YOLOX-s
	640
	8xb32
	Yes
	41.9 (+1.2)

	YOLOX-m
	640
	8xb8
	No
	46.9

	YOLOX-m
	640
	8xb32
	Yes
	47.5 (+0.6)

More details can be found in configs/yolox/README.md [https://github.com/open-mmlab/mmyolo/blob/main/configs/yolox/README.md#--results-and-models].

6 Consider ignore scenarios to avoid uncertain annotations

Take CrowdHuman as an example, a crowded pedestrian detection dataset. Here’s a typical image:

The image is sourced from detectron2 issue [https://github.com/facebookresearch/detectron2/issues/1909]. The area marked with a yellow cross indicates the iscrowd label. There are two reasons for this:

	This area is not a real person, such as the person on the poster

	The area is too crowded to mark

In this scenario, you cannot simply delete such annotations, because once you delete them, it means treating them as background areas during training. However, they are different from the background. Firstly, the people on the posters are very similar to real people, and there are indeed people in crowded areas that are difficult to annotate. If you simply train them as background, it will cause false negatives. The best approach is to treat the crowded area as an ignored region, where any output in this area is directly ignored, with no loss calculated and no model fitting enforced.

MMYOLO quickly and easily verifies the function of ‘iscrowd’ annotation on YOLOv5. The performance is as follows:

	Backbone
	ignore_iof_thr
	box AP50(CrowDHuman Metric)
	MR
	JI

	YOLOv5-s
	-1
	85.79
	48.7
	75.33

	YOLOv5-s
	0.5
	86.17
	48.8
	75.87

ignore_iof_thr set to -1 indicates that the ignored labels are not considered, and it can be seen that the performance is improved to a certain extent, more details can be found in CrowdHuman results [https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5/README.md#crowdhuman]. If you encounter similar situations in your custom dataset, it is recommended that you consider using ignore labels to avoid uncertain annotations.

7 Use knowledge distillation

Knowledge distillation is a widely used technique that can transfer the performance of a large model to a smaller model, thereby improving the detection performance of the smaller model. Currently, MMYOLO and MMRazor have supported this feature and conducted initial verification on RTMDet.

	Model
	box AP

	RTMDet-tiny
	41.0

	RTMDet-tiny *
	41.8 (+0.8)

	RTMDet-s
	44.6

	RTMDet-s *
	45.7 (+1.1)

	RTMDet-m
	49.3

	RTMDet-m *
	50.2 (+0.9)

	RTMDet-l
	51.4

	RTMDet-l *
	52.3 (+0.9)

* indicates the result of using the large model distillation, more details can be found in Distill RTMDet [https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet/distillation].

8 Stronger augmentation parameters are used for larger models

If you have modified the model based on the default configuration or replaced the backbone network, it is recommended to scale the data augmentation parameters based on the current model size. Generally, larger models require stronger augmentation parameters, otherwise they may not fully leverage the benefits of large models. Conversely, if strong augmentations are applied to small models, it may result in underfitting. Taking RTMDet as an example, we can observe the data augmentation parameters for different model sizes.

random_resize_ratio_range represents the random scaling range of RandomResize, and mosaic_max_cached_images/mixup_max_cached_images represents the number of cached images during Mosaic/MixUp augmentation, which can be used to adjust the strength of augmentation. The YOLO series models all follow the same set of parameter settings principles.

Accelerate training speed

1 Enable cudnn_benchmark for single-scale training

Most of the input image sizes in the YOLO series algorithms are fixed, which is single-scale training. In this case, you can turn on cudnn_benchmark to accelerate the training speed. This parameter is mainly set for PyTorch’s cuDNN underlying library, and setting this flag can allow the built-in cuDNN to automatically find the most efficient algorithm that is best suited for the current configuration to optimize the running efficiency. If this flag is turned on in multi-scale mode, it will continuously search for the optimal algorithm, which may slow down the training speed instead.

To enable cudnn_benchmark in MMYOLO, you can set env_cfg = dict(cudnn_benchmark=True) in the configuration.

2 Use Mosaic and MixUp with caching

If you have applied Mosaic and MixUp in your data augmentation, and after investigating the training bottleneck, it is found that the random image reading is causing the issue, then it is recommended to replace the regular Mosaic and MixUp with the cache-enabled versions proposed in RTMDet.

	Data Aug
	Use cache
	ms/100 imgs

	Mosaic
	No
	87.1

	Mosaic
	Yes
	24.0

	MixUp
	No
	19.3

	MixUp
	Yes
	12.4

Mosaic and MixUp involve mixing multiple images, and their time consumption is K times that of ordinary data augmentation (K is the number of images mixed). For example, in YOLOv5, when doing Mosaic each time, the information of 4 images needs to be reloaded from the hard disk. However, the cached version of Mosaic and MixUp only needs to reload the current image, while the remaining images involved in the mixed augmentation are obtained from the cache queue, greatly improving efficiency by sacrificing a certain amount of memory space.

 Model design instructions

Model design instructions

YOLO series model basic class

The structural figure is provided by RangeKing@GitHub. Thank you RangeKing！

 Algorithm principles and implementation

Algorithm principles and implementation

	Algorithm principles and implementation with YOLOv5

	Algorithm principles and implementation with YOLOv8

	Algorithm principles and implementation with RTMDet

 Algorithm principles and implementation with YOLOv5

Algorithm principles and implementation with YOLOv5

0 Introduction

 Algorithm principles and implementation with YOLOv8

Algorithm principles and implementation with YOLOv8

0 Introduction

 Algorithm principles and implementation with RTMDet

Algorithm principles and implementation with RTMDet

0 Introduction

High performance, low latency one-stage object detection

 MMYOLO application examples

MMYOLO application examples

	A benchmark for ionogram real-time object detection based on MMYOLO

 A benchmark for ionogram real-time object detection based on MMYOLO

A benchmark for ionogram real-time object detection based on MMYOLO

Dataset

Digital ionogram is the most important way to obtain real-time ionospheric information.
Ionospheric structure detection is of great research significance for accurate extraction of ionospheric key parameters.

This study utilize 4311 ionograms with different seasons obtained by the Chinese Academy of Sciences in Hainan, Wuhan, and Huailai to establish a dataset. The six structures, including Layer E, Es-l, Es-c, F1, F2, and Spread F are manually annotated using labelme [https://github.com/wkentaro/labelme]. Dataset Download [https://github.com/VoyagerXvoyagerx/Ionogram_detection/releases/download/Dataset/Iono4311.zip]

 Replace the backbone network

Replace the backbone network

Note

	When using other backbone networks, you need to ensure that the output channels of the backbone network match the input channels of the neck network.

	The configuration files given below only ensure that the training will work correctly, and their training performance may not be optimal. Because some backbones require specific learning rates, optimizers, and other hyperparameters. Related contents will be added in the “Training Tips” section later.

Use backbone network implemented in MMYOLO

Suppose you want to use YOLOv6EfficientRep as the backbone network of YOLOv5, the example config is as the following:

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

model = dict(
 backbone=dict(
 type='YOLOv6EfficientRep',
 norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
 act_cfg=dict(type='ReLU', inplace=True))
)

Use backbone network implemented in other OpenMMLab repositories

The model registry in MMYOLO, MMDetection, MMClassification, and MMSegmentation all inherit from the root registry in MMEngine in the OpenMMLab 2.0 system, allowing these repositories to directly use modules already implemented by each other. Therefore, in MMYOLO, users can use backbone networks from MMDetection and MMClassification without reimplementation.

Use backbone network implemented in MMDetection

	Suppose you want to use ResNet-50 as the backbone network of YOLOv5, the example config is as the following:

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]

model = dict(
 backbone=dict(
 delete=True, # Delete the backbone field in _base_
 type='mmdet.ResNet', # Using ResNet from mmdet
 depth=50,
 num_stages=4,
 out_indices=(1, 2, 3),
 frozen_stages=1,
 norm_cfg=dict(type='BN', requires_grad=True),
 norm_eval=True,
 style='pytorch',
 init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
 neck=dict(
 type='YOLOv5PAFPN',
 widen_factor=widen_factor,
 in_channels=channels, # Note: The 3 channels of ResNet-50 output are [512, 1024, 2048], which do not match the original yolov5-s neck and need to be changed.
 out_channels=channels),
 bbox_head=dict(
 type='YOLOv5Head',
 head_module=dict(
 type='YOLOv5HeadModule',
 in_channels=channels, # input channels of head need to be changed accordingly
 widen_factor=widen_factor))
)

	Suppose you want to use SwinTransformer-Tiny as the backbone network of YOLOv5, the example config is as the following:

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [192, 384, 768]
checkpoint_file = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa

model = dict(
 backbone=dict(
 delete=True, # Delete the backbone field in _base_
 type='mmdet.SwinTransformer', # Using SwinTransformer from mmdet
 embed_dims=96,
 depths=[2, 2, 6, 2],
 num_heads=[3, 6, 12, 24],
 window_size=7,
 mlp_ratio=4,
 qkv_bias=True,
 qk_scale=None,
 drop_rate=0.,
 attn_drop_rate=0.,
 drop_path_rate=0.2,
 patch_norm=True,
 out_indices=(1, 2, 3),
 with_cp=False,
 convert_weights=True,
 init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
 neck=dict(
 type='YOLOv5PAFPN',
 deepen_factor=deepen_factor,
 widen_factor=widen_factor,
 in_channels=channels, # Note: The 3 channels of SwinTransformer-Tiny output are [192, 384, 768], which do not match the original yolov5-s neck and need to be changed.
 out_channels=channels),
 bbox_head=dict(
 type='YOLOv5Head',
 head_module=dict(
 type='YOLOv5HeadModule',
 in_channels=channels, # input channels of head need to be changed accordingly
 widen_factor=widen_factor))
)

Use backbone network implemented in MMClassification

	Suppose you want to use ConvNeXt-Tiny as the backbone network of YOLOv5, the example config is as the following:

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

please run the command, mim install "mmcls>=1.0.0rc2", to install mmcls
import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [192, 384, 768]

model = dict(
 backbone=dict(
 delete=True, # Delete the backbone field in _base_
 type='mmcls.ConvNeXt', # Using ConvNeXt from mmcls
 arch='tiny',
 out_indices=(1, 2, 3),
 drop_path_rate=0.4,
 layer_scale_init_value=1.0,
 gap_before_final_norm=False,
 init_cfg=dict(
 type='Pretrained', checkpoint=checkpoint_file,
 prefix='backbone.')), # The pre-trained weights of backbone network in MMCls have prefix='backbone.'. The prefix in the keys will be removed so that these weights can be normally loaded.
 neck=dict(
 type='YOLOv5PAFPN',
 deepen_factor=deepen_factor,
 widen_factor=widen_factor,
 in_channels=channels, # Note: The 3 channels of ConvNeXt-Tiny output are [192, 384, 768], which do not match the original yolov5-s neck and need to be changed.
 out_channels=channels),
 bbox_head=dict(
 type='YOLOv5Head',
 head_module=dict(
 type='YOLOv5HeadModule',
 in_channels=channels, # input channels of head need to be changed accordingly
 widen_factor=widen_factor))
)

	Suppose you want to use MobileNetV3-small as the backbone network of YOLOv5, the example config is as the following:

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

please run the command, mim install "mmcls>=1.0.0rc2", to install mmcls
import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth' # noqa
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [24, 48, 96]

model = dict(
 backbone=dict(
 delete=True, # Delete the backbone field in _base_
 type='mmcls.MobileNetV3', # Using MobileNetV3 from mmcls
 arch='small',
 out_indices=(3, 8, 11), # Modify out_indices
 init_cfg=dict(
 type='Pretrained',
 checkpoint=checkpoint_file,
 prefix='backbone.')), # The pre-trained weights of backbone network in MMCls have prefix='backbone.'. The prefix in the keys will be removed so that these weights can be normally loaded.
 neck=dict(
 type='YOLOv5PAFPN',
 deepen_factor=deepen_factor,
 widen_factor=widen_factor,
 in_channels=channels, # Note: The 3 channels of MobileNetV3 output are [24, 48, 96], which do not match the original yolov5-s neck and need to be changed.
 out_channels=channels),
 bbox_head=dict(
 type='YOLOv5Head',
 head_module=dict(
 type='YOLOv5HeadModule',
 in_channels=channels, # input channels of head need to be changed accordingly
 widen_factor=widen_factor))
)

Use backbone network in timm through MMClassification

MMClassification also provides a wrapper for the PyTorch Image Models (timm) backbone network, users can directly use the backbone network in timm through MMClassification. Suppose you want to use EfficientNet-B1 as the backbone network of YOLOv5, the example config is as the following:

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

please run the command, mim install "mmcls>=1.0.0rc2", to install mmcls
and the command, pip install timm, to install timm
import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)

deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [40, 112, 320]

model = dict(
 backbone=dict(
 delete=True, # Delete the backbone field in _base_
 type='mmcls.TIMMBackbone', # Using timm from mmcls
 model_name='efficientnet_b1', # Using efficientnet_b1 in timm
 features_only=True,
 pretrained=True,
 out_indices=(2, 3, 4)),
 neck=dict(
 type='YOLOv5PAFPN',
 deepen_factor=deepen_factor,
 widen_factor=widen_factor,
 in_channels=channels, # Note: The 3 channels of EfficientNet-B1 output are [40, 112, 320], which do not match the original yolov5-s neck and need to be changed.
 out_channels=channels),
 bbox_head=dict(
 type='YOLOv5Head',
 head_module=dict(
 type='YOLOv5HeadModule',
 in_channels=channels, # input channels of head need to be changed accordingly
 widen_factor=widen_factor))
)

Use backbone network implemented in MMSelfSup

Suppose you want to use ResNet-50 which is self-supervised trained by MoCo v3 in MMSelfSup as the backbone network of YOLOv5, the example config is as the following:

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

please run the command, mim install "mmselfsup>=1.0.0rc3", to install mmselfsup
import mmselfsup.models to trigger register_module in mmselfsup
custom_imports = dict(imports=['mmselfsup.models'], allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth' # noqa
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]

model = dict(
 backbone=dict(
 delete=True, # Delete the backbone field in _base_
 type='mmselfsup.ResNet',
 depth=50,
 num_stages=4,
 out_indices=(2, 3, 4), # Note: out_indices of ResNet in MMSelfSup are 1 larger than those in MMdet and MMCls
 frozen_stages=1,
 norm_cfg=dict(type='BN', requires_grad=True),
 norm_eval=True,
 style='pytorch',
 init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
 neck=dict(
 type='YOLOv5PAFPN',
 deepen_factor=deepen_factor,
 widen_factor=widen_factor,
 in_channels=channels, # Note: The 3 channels of ResNet-50 output are [512, 1024, 2048], which do not match the original yolov5-s neck and need to be changed.
 out_channels=channels),
 bbox_head=dict(
 type='YOLOv5Head',
 head_module=dict(
 type='YOLOv5HeadModule',
 in_channels=channels, # input channels of head need to be changed accordingly
 widen_factor=widen_factor))
)

Don’t used pre-training weights

When we replace the backbone network, the model initialization is trained by default loading the pre-training weight of the backbone network. Instead of using the pre-training weights of the backbone network, if you want to train the time model from scratch,
You can set init_cfg in ‘backbone’ to ‘None’. In this case, the backbone network will be initialized with the default initialization method, instead of using the trained pre-training weight.

base = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'

deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]

model = dict(
 backbone=dict(
 delete=True, # Delete the backbone field in _base_
 type='mmdet.ResNet', # Using ResNet from mmdet
 depth=50,
 num_stages=4,
 out_indices=(1, 2, 3),
 frozen_stages=1,
 norm_cfg=dict(type='BN', requires_grad=True),
 norm_eval=True,
 style='pytorch',
 init_cfg=None # If init_cfg is set to None, backbone will not be initialized with pre-trained weights
),
 neck=dict(
 type='YOLOv5PAFPN',
 widen_factor=widen_factor,
 in_channels=channels, # Note: The 3 channels of ResNet-50 output are [512, 1024, 2048], which do not match the original yolov5-s neck and need to be changed.
 out_channels=channels),
 bbox_head=dict(
 type='YOLOv5Head',
 head_module=dict(
 type='YOLOv5HeadModule',
 in_channels=channels, # input channels of head need to be changed accordingly
 widen_factor=widen_factor))
)

 Model Complexity Analysis

Model Complexity Analysis

We provide a tools/analysis_tools/get_flops.py script to help with the complexity analysis for models of MMYOLO.
Currently, it provides the interfaces to compute parameter, activation and flops of the given model,
and supports printing the related information layer-by-layer in terms of network structure or table.

The commands as follows:

python tools/analysis_tools/get_flops.py
 ${CONFIG_FILE} \ # config file path
 [--shape ${IMAGE_SIZE}] \ # input image size (int), default 640*640
 [--show-arch ${ARCH_DISPLAY}] \ # print related information by network layers
 [--not-show-table ${TABLE_DISPLAY}] \ # print related information by table
 [--cfg-options ${CFG_OPTIONS}] # config file option
[] stands for optional parameter, do not type [] when actually entering the command line

Let’s take the rtmdet_s_syncbn_fast_8xb32-300e_coco.py config file in RTMDet as an example to show how this script can be used:

Usage Example 1: Print Flops, Parameters and related information by table

python tools/analysis_tools/get_flops.py configs/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco.py

Output:

==============================
Input shape: torch.Size([640, 640])
Model Flops: 14.835G
Model Parameters: 8.887M
==============================

	module
	#parameters or shape
	#flops
	#activations

	model
	8.887M
	14.835G
	35.676M

	backbone
	4.378M
	5.416G
	22.529M

	backbone.stem
	7.472K
	0.765G
	6.554M

	backbone.stem.0
	0.464K
	47.514M
	1.638M

	backbone.stem.1
	2.336K
	0.239G
	1.638M

	backbone.stem.2
	4.672K
	0.478G
	3.277M

	backbone.stage1
	42.4K
	0.981G
	7.373M

	backbone.stage1.0
	18.56K
	0.475G
	1.638M

	backbone.stage1.1
	23.84K
	0.505G
	5.734M

	backbone.stage2
	0.21M
	1.237G
	4.915M

	backbone.stage2.0
	73.984K
	0.473G
	0.819M

	backbone.stage2.1
	0.136M
	0.764G
	4.096M

	backbone.stage3
	0.829M
	1.221G
	2.458M

	backbone.stage3.0
	0.295M
	0.473G
	0.41M

	backbone.stage3.1
	0.534M
	0.749G
	2.048M

	backbone.stage4
	3.29M
	1.211G
	1.229M

	backbone.stage4.0
	1.181M
	0.472G
	0.205M

	backbone.stage4.1
	0.657M
	0.263G
	0.307M

	backbone.stage4.2
	1.452M
	0.476G
	0.717M

	neck
	3.883M
	4.366G
	8.141M

	neck.reduce_layers.2
	0.132M
	52.634M
	0.102M

	neck.reduce_layers.2.conv
	0.131M
	52.429M
	0.102M

	neck.reduce_layers.2.bn
	0.512K
	0.205M
	0

	neck.top_down_layers
	0.491M
	1.23G
	4.506M

	neck.top_down_layers.0
	0.398M
	0.638G
	1.638M

	neck.top_down_layers.1
	92.608K
	0.593G
	2.867M

	neck.downsample_layers
	0.738M
	0.472G
	0.307M

	neck.downsample_layers.0
	0.148M
	0.236G
	0.205M

	neck.downsample_layers.1
	0.59M
	0.236G
	0.102M

	neck.bottom_up_layers
	1.49M
	0.956G
	2.15M

	neck.bottom_up_layers.0
	0.3M
	0.48G
	1.434M

	neck.bottom_up_layers.1
	1.19M
	0.476G
	0.717M

	neck.out_layers
	1.033M
	1.654G
	1.075M

	neck.out_layers.0
	0.148M
	0.945G
	0.819M

	neck.out_layers.1
	0.295M
	0.472G
	0.205M

	neck.out_layers.2
	0.59M
	0.236G
	51.2K

	neck.upsample_layers
	
	1.229M
	0

	neck.upsample_layers.0
	
	0.41M
	0

	neck.upsample_layers.1
	
	0.819M
	0

	bbox_head.head_module
	0.625M
	5.053G
	5.006M

	bbox_head.head_module.cls_convs
	0.296M
	2.482G
	2.15M

	bbox_head.head_module.cls_convs.0
	0.295M
	2.481G
	2.15M

	bbox_head.head_module.cls_convs.1
	0.512K
	0.819M
	0

	bbox_head.head_module.cls_convs.2
	0.512K
	0.205M
	0

	bbox_head.head_module.reg_convs
	0.296M
	2.482G
	2.15M

	bbox_head.head_module.reg_convs.0
	0.295M
	2.481G
	2.15M

	bbox_head.head_module.reg_convs.1
	0.512K
	0.819M
	0

	bbox_head.head_module.reg_convs.2
	0.512K
	0.205M
	0

	bbox_head.head_module.rtm_cls
	30.96K
	86.016M
	0.672M

	bbox_head.head_module.rtm_cls.0
	10.32K
	65.536M
	0.512M

	bbox_head.head_module.rtm_cls.1
	10.32K
	16.384M
	0.128M

	bbox_head.head_module.rtm_cls.2
	10.32K
	4.096M
	32K

	bbox_head.head_module.rtm_reg
	1.548K
	4.301M
	33.6K

	bbox_head.head_module.rtm_reg.0
	0.516K
	3.277M
	25.6K

	bbox_head.head_module.rtm_reg.1
	0.516K
	0.819M
	6.4K

	bbox_head.head_module.rtm_reg.2
	0.516K
	0.205M
	1.6K

Usage Example 2: Print related information by network layers

python tools/analysis_tools/get_flops.py configs/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco.py --show-arch

Due to the complex structure of RTMDet, the output is long.
The following shows only the output from bbox_head.head_module.rtm_reg section:

(rtm_reg): ModuleList(
 #params: 1.55K, #flops: 4.3M, #acts: 33.6K
 (0): Conv2d(
 128, 4, kernel_size=(1, 1), stride=(1, 1)
 #params: 0.52K, #flops: 3.28M, #acts: 25.6K
)
 (1): Conv2d(
 128, 4, kernel_size=(1, 1), stride=(1, 1)
 #params: 0.52K, #flops: 0.82M, #acts: 6.4K
)
 (2): Conv2d(
 128, 4, kernel_size=(1, 1), stride=(1, 1)
 #params: 0.52K, #flops: 0.2M, #acts: 1.6K
)

 Annotation-to-deployment workflow for custom dataset

Annotation-to-deployment workflow for custom dataset

In our daily work and study, we often encounter some tasks that need to train custom dataset. There are few scenarios in which open-source datasets can be used as online models, so we need to carry out a series of operations on our custom datasets to ensure that the models can be put into production and serve users.

See also

The video of this document has been posted on Bilibili: A nanny level tutorials for custom datasets from annotationt to deployment [https://www.bilibili.com/video/BV1RG4y137i5]

Note

All instructions in this document are done on Linux and are fully available on Windows, only slightly different in commands and operations.

Default that you have completed the installation of MMYOLO, if not installed, please refer to the document GET STARTED [https://mmyolo.readthedocs.io/en/latest/get_started.html] for installation.

In this tutorial, we will introduce the whole process from annotating custom dataset to final training, testing and deployment. The overview steps are as below:

	Prepare dataset: tools/misc/download_dataset.py

	Use the software of labelme [https://github.com/wkentaro/labelme] to annotate: demo/image_demo.py + labelme

	Convert the dataset into COCO format: tools/dataset_converters/labelme2coco.py

	Split dataset:tools/misc/coco_split.py

	Creat a config file based on dataset

	Dataset visualization analysis: tools/analysis_tools/dataset_analysis.py

	Optimize Anchor size: tools/analysis_tools/optimize_anchors.py

	Visualization the data processing part of config: tools/analysis_tools/browse_dataset.py

	Train: tools/train.py

	Inference: demo/image_demo.py

	Deployment

Note

After obtaining the model weight and the mAP of validation set, users need to deep analyse the bad cases of incorrect predictions in order to optimize model. MMYOLO will add this function in the future. Expect.

Each step is described in detail below.

